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ABSTRACT

Machine learning models commonly face challenges in maintaining robustness
under distribution shifts. An effective strategy to address this issue involves fine-
tuning selected layers of pre-trained models for adaptation. However, the lack of
clear criteria for selecting trainable layers poses a significant obstacle, inevitably
distorting pre-trained features amidst fine-tuning. This paper proposes a novel
approach to this problem by analyzing the loss landscape of trained networks.
By drawing insight from recent studies on neuron alignment, we conjecture that
aligning models in their loss landscape will minimize the knowledge distortion
during the fine-tuning process. Reflecting this, we introduce a novel fine-tuning
framework, named SHERPA (Shifted basin for Enhanced Robustness via Per-
muted Activations), which shifts the training model towards the loss basin of a
trained anchor model to encourage the preservation of pre-trained features. Em-
pirical results demonstrate the effectiveness of SHERPA in enhancing Out-of-
Distribution (OOD) robustness in multiple benchmarks (PACS, Terra Incognita,
VLCS), without incurring additional overhead from gradient computations. Our
work provides fresh perspectives in understanding how neural networks preserve
and tune knowledge in the face of distribution shifts.

1 INTRODUCTION

An underlying assumption of machine learning is that the model will be applied to a target that is
independent and identically distributed (i.e. i.i.d) to the trained data. In reality, this presumption
is commonly violated by a discrepancy in distribution. This discrepancy, alias distribution shift,
frequently hinders the performance of trained models (Kurakin et al., 2018). To mitigate this issue,
a plethora of work is dedicated to learning robust models. An effective method is to fine-tune
selective layers of pre-trained models to preserve general knowledge learned from the pre-trained
distribution, while also reflecting the target distribution (Zhuang et al., 2020). Expanding this, more
recent works suggest that tuning certain layers can outperform the entire model Lee et al. (2022).
Yet, a clear criterion for the selection of trainable layers remains unclear, owing to our insufficient
understanding of how neural networks preserve knowledge.

In this paper, we suggest a novel outlook to this question, centered on the loss landscape of trained
networks (Simsek et al., 2021). Deriving from previous works on loss landscapes, we show that
models sharing a loss basin share more pre-trained features (Neyshabur et al., 2020). Reflecting
this, we conjecture that shifting the training model towards the basin of a well-trained model would
help preserve pre-trained features that are critical for model robustness. Next, we revisit recent
works on neuron alignment, which aligns individual models in their loss landscapes via permuta-
tion, to devise SHERPA (Shifted basin for Enhanced Robustness via Permuted Activations), a 2
stage fine-tuning framework that performs neuron alignment before the fine-tuning stage. Specifi-
cally, SHERPA shifts the training model towards the robust basin of the pre-trained anchor model to
preserve pre-trained knowledge. We show that SHERPA effectively enhances the OOD robustness
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across multiple benchmark datasets, without the additional cost of gradient computations. Further-
more, we provide an extensive analysis of the effect of neuron alignment in the parameter space, and
the loss geometry of trained models.

We state our contributions threefold. (1) We reveal that neuron alignment can help preserve pre-
trained knowledge amidst fine-tuning by exploiting the loss basin of trained models (2) We present
a 2 stage fine-tuning method SHERPA that enhances OOD generalizability without the additional
cost of gradient computation. We show the strength of SHERPA in boosting OOD performance
under severe distribution shifts. (3) We demonstrate that neuron alignment offers insights into how
neural networks preserve and tune knowledge, revealing promising avenues for further exploration.

2 RELATED WORKS

Exploiting pre-trained models Leveraging the knowledge of pre-trained models is a longstand-
ing area of investigation (Tan et al., 2018). The key motivation behind utilizing pre-trained models
lies in their effectiveness in improving model performance under both in-distribution (ID) and out-
of-distribution (OOD) settings. A well-accepted idea is that fine-tuning an entire model inevitably
distorts pre-obtained knowledge (Kumar et al., 2022), leading to a performance drop in OOD set-
tings. Reflecting this, recent works in transfer learning tune selected layers of a model to preserve
knowledge during model adaptation (Kirichenko et al., 2022; Lee et al., 2022; Kaplun et al., 2023).

Neuron Alignment The idea behind neuron alignment revolves around finding the optimal method
to merge multiple models in their weight space (i.e. Model Fusion). Initially introduced in the
federated learning literature (Wang et al., 2020), model fusion has gained considerable attention for
its generalization capability (Wortsman et al., 2022; Rame et al., 2022; 2023). A crucial condition
for model fusion is that the models being merged must occupy the same loss basins (Neyshabur
et al., 2020; Gontijo-Lopes et al., 2021) to ensure Linear Mode Connectivity (LMC) (Frankle et al.,
2020; Juneja et al., 2022). Recent works aim to overcome this constraint via neuron alignment,
capitalizing on the permutation-invariance property of neural networks (Entezari et al., 2021). Here,
the permutation invariance of neural architectures refers to the phenomenon that replacing the ith

weight matrix Wi in the model with P · Wi, where P is a permutation matrix, and the i + 1th

weight matrix as Wi+1 · P−1 to reflect the permutation in the previous layer, can represent the
identical function as before, which can be utilized to align individual models in their loss landscapes
(Ainsworth et al., 2022; Jordan et al., 2022; Nguyen et al., 2023; Stoica et al., 2023).

3 METHOD: LEVERAGING NEURON ALIGNMENT FOR ROBUST FINE-TUNING

We present a simple fine-tuning framework SHERPA that leverages neuron alignment for the preser-
vation of pre-trained knowledge. SHERPA is a 2 stage framework that (1) aligns the training model
with the teacher model in their loss landscape and then (2) fine-tunes the model with the source data.

Notation We begin by defining the notations. In our problem formulation, we aim to train a model
M with the source distribution Psrc and test M ’s robustness across both the source Psrc and the
OOD target distribution Ptgt, similar to the domain generalization setup (Gulrajani & Lopez-Paz,
2020). In our setting, M is a pre-trained model trained on pre-training distribution Ppt. Finally, we
introduce an anchor model A which is pre-trained on the distribution PA and then trained on Psrc.

Problem Formulation & Setup Without any additional procedures, model M pre-trained on Ppt

and fine-tuned on the target Psrc tends to display unexpectedly high OOD performance on the target
data Ptgt (Gulrajani & Lopez-Paz, 2020). The generalizability of M is likely the result of the
knowledge learned from Ppt, as discussed in Kumar et al. (2022); Li et al. (2022). However, there
are cases where Ppt is largely different from the source and target distribution, such that naively
fine-tuning on Psrc will distort pre-trained knowledge, limiting M ’s generalizability on target Ptgt.

Reflecting on this, this paper aims to devise a method that can minimize the distortion of pre-trained
knowledge while fine-tuning M , such that its OOD robustness is maintained. To reflect realistic
settings, we add some additional constraints: (1) Limited Data: Similar to the domain generalization
setting (Zhou et al., 2022), we limit our available data to Psrc. In other words, M can only be
trained on limited source data. This constraint is added to display that our manipulations during the
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fine-tuning process have clear effects on the model’s post-training OOD generalizability. (2) Limited
Resources: In this setting, we can imagine leveraging auxiliary information for guidance. A possible
method would be to use an additional model A to regularize the learning procedure, namely in the
form of knowledge distillation. Yet, this approach normally requires excessive computation costs
for gradient updates. In contrast, we aim to limit the use of computing resources.

3.1 SHERPA: SHIFTED BASIN FOR ENHANCED ROBUSTNESS VIA PERMUTED ACTIVATIONS

x

M
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A
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Figure 1: Illustration of SHERPA. SHERPA
leverages neuron alignment to shift the model M
towards the loss basin of the anchor model A, us-
ing permutation π. SHERPA aims to exploit the
rich loss basin of A during training.

ShERPA aims to preserve pre-trained knowl-
edge by leveraging neuron alignment. The
fundamental of our method is rooted in
the idea that models closely located in the
loss landscape share more pre-trained features
(Neyshabur et al., 2020). In this sense, we con-
jecture that keeping a model M in the vicinity
of a trained anchor model A’s loss basin will
minimize the distortion of pre-trained knowl-
edge during the training of M . Following this,
we adopt an activation-matching method for
neuron alignment (Li et al., 2016; Jordan et al.,
2022), which shifts the model towards the loss
basin of the anchor (Entezari et al., 2021).

Let us denote the model weight of the anchor model A and the training model M as ΘA and ΘM ,
respectively. Our neuron alignment algorithm aims to find a set of permutations π = (P1, P2 . . . PL)
that aligns L-layer networks A and π(M) in their weight space. In specific, for a batch of samples,
we search for a permutation Pl that maximizes Equation (1) for ith hidden units in the lth layer:∑

i

corr
(
XA

(l,i), X
M
(l,Pl(i)

)
, (1)

where XA
(l,i), X

M
(l,Pl(i))

refers to the random variables representing the activations of the ith hidden
units in the lth layer in models A and M , respectively (Jordan et al., 2022). The effectiveness
of using correlation values to measure the degree of relation between the units was studied in Li
et al. (2016). Optimizing Equation (1) maximizes the sum of correlations between the activations
between the two models, which is a Linear Assignment Problem (Bertsekas, 1998) that can be solved
at polynomial-time using combinatorial optimization methods (e.g., Hungarian algorithm (Kuhn,
1955), Jonker-Volgenant algorithm (Jonker & Volgenant, 1988)) without excess computation.

Intuitively, the neuron alignment between the anchor A and the model M is similar to shifting M
towards the loss basin of A, as empirically shown in Entezari et al. (2021). Now, consider a scenario
where A is a well-trained model with a flat and wide loss landscape that possesses advantages in out-
of-distribution (OOD) generalization (Hochreiter & Schmidhuber, 1997; Cha et al., 2021; Iyer et al.,
2023). If neuron alignment transports a model into another model’s robust basin, we conjecture that
aligning the model before fine-tuning can enhance the robustness of M by minimizing the distortion
of pre-trained features.

Deriving from this, SHERPA first aligns the new training model M with the trained model A, such
that the permuted model (π(M)) resides in the loss basin of A. Afterward, the permuted model
π(M) is trained on the source distribution Psrc with the ERM loss (Gulrajani & Lopez-Paz, 2020),
which is the cross-entropy loss for the image classification task written as:

Lce(y, ŷ) = −
∑

i
yi log(ŷi), (2)

with y the ground truth, ŷ the softmax prediction of the model. An overview of our method is
illustrated in Figure 1. We conjecture that the neuron aligned π(M) will benefit from training on
the loss basin of A, preserving more of its pre-trained features. Specifically, we expect that the fine-
tuned π(M)′ will display higher OOD robustness. In Section 4, we present that empirical results
support our conjecture, consistent with prior research on neuron alignment (Singh & Jaggi, 2020;
Entezari et al., 2021). Furthermore, we provide extensive analysis on SHERPA in Appendix A to
show SHERPA’s effect in preserving pre-trained features.
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4 EXPERIMENTS

Datasets & Implementation To test the effect of neuron alignment on model robustness, we
select Domain Generalization (DG) benchmarks (e.f., PACS (Li et al., 2017), Terra Incognita (Beery
et al., 2018) and VLCS (Fang et al., 2013)) that display significant distribution shifts across multiple
datasets. Details regarding the dataset are reported in Appendix C.1. Following the general DG
setting (Gulrajani & Lopez-Paz, 2020), we fix the architecture of the model M and the anchor A as
ResNet-50 (He et al., 2016). To clarify, the model M is not yet trained on the source dataset Psrc,
while the anchor A is trained on the source Psrc. Implementation details are reported in Appendix C.

4.1 EXPERIMENTAL RESULTS AND ANALYSIS

Table 1: Accuracy on PACS.

Method A C P S Avg.

ERM 91.22 80.63 98.03 67.32 84.3 ±0.2
Ensemble (m=6) 91.19 82.47 98.84 77.90 87.6
LP-FT (Kumar et al., 2022) 91.17 81.21 98.45 73.57 86.1 ±0.5

Random Perm. 87.80 84.64 97.85 71.06 85.3 ±2.1
SHERPA (Ours) 90.00 83.53 97.62 76.48 86.9 ±0.1

Experiment on PACS The PACS experiment aims to
display the effect of neuron alignment on enhancing the
robustness of the trained model. The results are reported
in Table 1, where A1, C, P, and S refer to the unseen tar-
get dataset. We find that aligning M with the anchor A
indeed boosts OOD accuracy. Specifically, we compare
the average OOD accuracy of the baseline ERM (84.3)
with SHERPA (86.9), where the two methods only differ in their use of neuron alignment. Our
method also outperformed LP-FT (Kumar et al., 2022), while falling behind an ensemble of 6 mod-
els, which we consider as the upper bound owing to its innate strength in generalizability (Arpit
et al., 2022). Yet ensembles are heavier in terms of computation cost, while our method is much
lighter. Notably, we find that the performance of A has no significant impact on SHERPA, which are
discussed in Appendix A. Furthermore, we observe that random permutation affects the OOD per-
formance while displaying high fluctuations compared to aligning towards A (SHERPA), which is
in line with the idea of Entezari et al. (2021) that permutation is functionally equivalent to changing
the initialization, transporting models to a different loss basin.

Table 2: Accuracy on Terra Incognita.

Method L100 L38 L43 L46 Avg.

ERM 61.11 40.15 48.54 40.00 47.4 ±0.4
Ensemble (m=6) 57.73 46.16 61.46 43.75 52.3
LP-FT (Kumar et al., 2022) 64.17 42.71 44.98 42.24 48.5 ±0.5

Random Perm. 62.56 42.87 46.41 40.37 48.1 ±0.7
SHERPA (Ours) 64.63 41.28 45.47 41.78 48.3 ±0.2

Experiment on Terra Incognita Here, we present the
results of the Terra Incognita experiment at Table 2,
where L100, L38, L43, and L46 refer to the unseen target
datasets. Similar to the PACS experiment, models fine-
tuned after neuron alignment showed stronger OOD ac-
curacy (48.3) compared to the vanilla fine-tuned baseline
(47.4). Yet unlike PACS, our method was behind the en-
semble model (52.3) by a large margin. However, we would like to note that the reported perfor-
mance of the ensemble model in Rame et al. (2022) (49.2) was lower than our run (52.3). Like other
experiments, applying random permutation affected the OOD accuracy of the permuted model, dis-
playing high fluctuations in OOD performance. This fluctuation is an expected behavior, as random
permutation is similar to aligning with a random anchor. In the Terra Incognita dataset, our method
slightly fell behind LP-FT but displayed stronger stability with smaller fluctuations (±0.2 < ±0.5).

Table 3: Accuracy on VLCS.

Method C L S V Avg.

ERM 98.59 66.53 76.51 80.24 80.5 ±0.3
Ensemble(m=6) 98.02 66.11 78.55 81.61 81.0
LP-FT (Kumar et al., 2022) 99.08 67.10 76.44 80.58 80.8 ±0.3

Random Perm. 97.40 63.00 72.50 76.30 77.3 ±3.8
SHERPA (Ours) 99.22 66.19 75.47 82.43 80.8 ±0.2

Experiment on VLCS In Table 3, we report the exper-
imental results in the VLCS dataset. Here, C, L, V, and S
refer to the target dataset. Notably, we observe that a sim-
ilar pattern is repeated in the VLCS dataset, where neuron
alignment positively affected OOD accuracy compared to
the baseline (80.8 > 80.5), while the performance gap
between our method and the baseline is smaller than in
other experiments. Furthermore, the effect of random permutation was observed similar to other
experiments, suffering a strong level of fluctuation in the OOD accuracy. In VLCS, our method
showed very similar results to LP-FT, while we believe our method to be slightly more reliable.

Effect of Neuron Alignment on OOD performance In Section 3.1, we conjectured that if neuron
alignment algorithms transport model M into a trained anchor A’s loss basin, the permuted model
π(M) would be able to preserve its pre-trained knowledge amidst training on the source distribution
Psrc. In specific, we expected that the fine-tuned π(M)′ would display superior OOD robustness
than the fine-tuned M ′, as it supposedly preserved pre-trained features (Neyshabur et al., 2020).

1Please note that this is not the anchor A.
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In the above experiments, we have empirically shown that applying neuron alignment before fine-
tuning changes the OOD accuracy of trained models. Similar to our expectations, when the anchor A
is a trained model, the OOD accuracy of the fine-tuned π(M)′ (SHERPA) surpassed the baseline M ′

(ERM), as seen in Table 1. We interpret that these results support our conjecture above. Furthermore,
when we applied random permutations to M , the permuted model showed a varying performance
after fine-tuning. Once again, this display of randomness coincides with our expectations that neuron
alignment is indeed functionally equivalent to transporting the loss basin. Furthermore, these results
support the conjectures made by Entezari et al. (2021) that applying random permutations to an
SGD solution approximates training models with varying initialization. In Appendix A, we provide
a deeper analysis of the effect of neuron alignment on the model (e.g., model parameters, feature
representations, loss geometry).

5 DISCUSSION

Limitations In this section, we discuss the limitations of our work. Our framework uses an anchor
model of an identical architecture as the training model and is fine-tuned on the target dataset. The
first issue is the availability of an anchor model of identical architecture. Please note that for neuron
alignment, a model of identical architecture is necessary to ensure a 1:1 matching between individual
neurons of the anchor and the model Li et al. (2016); Ainsworth et al. (2022). However, in reality,
such models may not be readily available. We believe that further study is required to perform
neuron alignment between models of varying sizes Imfeld et al. (2024). Another limitation is the
redundancy of using a fine-tuned anchor model to guide the fine-tuning process. Whilst we believe
that the OOD performance boost effect justifies this small redundancy, we view that there is room
for further investigation.

Future Work In this section, we suggest a possible future work. In specific, we are interested
in using neuron alignment to develop a new layer-selection criterion for selective fine-tuning. It
is a well-established idea that selectively fine-tuning subset layers of a model is sufficient to adapt
the entire model, as described in previous works (Kirichenko et al., 2022; Rosenfeld et al., 2022).
Notably, (Lee et al., 2022) demonstrated that the selection of fine-tuning layers is influenced by the
type of distribution shift. We believe that there is room for improvement in designing an effective
criterion for layer selection. Our idea is that analyzing the effect of neuron alignment can provide
insights into how neural networks change amidst distribution shifts. In specific, we compare each
layer of the original model M and the permuted model π(M) and compute their distance. We
conjecture that the distance can be used as a criterion for layer selection. In our setting, the two
corresponding layers in M and π(M) are composed of the same weights, but with different orders.
Reflecting this, we adopt the Kendall-Tau rank distance as a distance metric, which measures the
number of permutations (swaps) required to transform M into π(M) (Kendall, 1938). Interestingly,
we find that selectively fine-tuning layers with high Kendall-Tau distance before/after neuron align-
ment tend to display higher OOD performance, with some exceptions. We find potential in extending
this observation to design a layer-selection criterion for selective (Lee et al., 2022) fine-tuning.

6 CONCLUSION

This paper proposes a novel fine-tuning framework for model robustness, namely SHERPA, which
leverages neuron alignment to preserve useful pre-trained knowledge amidst fine-tuning. The effec-
tiveness of our method in increasing OOD performance is successfully demonstrated across three
benchmarks (PACS, Terra Incognita, VLCS). We also show the effect of neuron alignment on the
model’s parameter space and illustrate its effect through a visualization of the loss surface. The abla-
tion study reinforces the effectiveness of our method across varying environments and hyperparam-
eters. More importantly, our research offers new insights into understanding how neural networks
behave against distribution shifts. Exploring neuron alignment for enhancing model robustness holds
promise for further development, including establishing layer-selection criteria for fine-tuning.
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Figure 2: The loss surface of trained models

A ANALYSIS

In this section, we present our analysis on SHERPA. Specifically, we illustrate our view on how
neuron alignment affects the learning process, as well as the model’s loss landscape.

Table 4: ℓ2 distance of ResNet-50 pa-
rameters before/after fine-tuning

Method Conv1 Layer1 Layer2 Layer3 Layer4

Epochs=1

ERM 0.0195 0.159 0.210 0.702 0.814
SHERPA (Ours) 0.0159 0.127 0.266 0.858 0.674

Epochs=10

ERM 0.0395 0.282 0.631 2.235 2.257
SHERPA (Ours) 0.0263 0.289 0.669 2.125 2.006

Epochs=30

ERM 0.0333 0.367 0.753 3.776 2.696
SHERPA (Ours) 0.0293 0.343 1.141 3.736 2.417

Effect of Neuron Alignment on Model Parameters To
display that neuron alignment is helpful for the preservation
of pre-trained knowledge amidst fine-tuning, we present an
analysis of the model in the parameter space. In specific, we
analyze the ℓ2 distance of the models before and after fine-
tuning, following the practice of Neyshabur et al. (2020).

We compare the ℓ2 distance between the layers/blocks of
(1) the model before fine-tuning and (2) the model after
fine-tuning. Specifically, we compare the 1st convolution
layer (Conv1), the 1st, 2nd, 3rd, and 4th layers (block) of
the ResNet-50. The fine-tuning setting follows the general
setting in Section 4, with a learning rate of 0.001 using the
SGD optimizer with a momentum of 0.9, as depicted in Appendix C. We repeat this experiment
across various training epochs, to see how the training model deviates from the original model dur-
ing fine-tuning.

We share the results in Table 4. In the 1st fine-tuning epoch, our method shows a slightly reduced
ℓ2 distance compared to the baseline in Conv1, Layer1, and Layer4. In the 10th fine-tuning epoch,
we observe that the gap has grown. Notably in Layer1, there is a very small ℓ2 gap (0.007). On the
other hand, Layer2 has changed significantly in our method(1.141) compared to that of the baseline
(0.753). Lastly, in the 30th epoch, we observe that a similar pattern is repeated, where Layer2 has
significantly changed in our method (1.141). ℓ2 distance of Layer1 (0.343), on the other hand, has
become smaller than that of the baseline ERM (0.367). We believe that this result displays how the
neuron-aligned model preserves knowledge by selectively updating subsets of the model.

Table 5: Feature Similarity (CKA) of
ResNet-50 before/after fine-tuning

Method Conv1 Layer1 Layer2 Layer3 Layer4

Epochs=30

ERM 1.0000 0.8784 0.9610 0.8452 0.3622
SHERPA (Ours) 1.0000 0.8998 0.9628 0.8089 0.3547

It is a well-established idea that selectively fine-tuning sub-
set layers of a model is sufficient to adapt the entire model,
as described in previous works (Kirichenko et al., 2022;
Rosenfeld et al., 2022). Notably, Lee et al. (2022) demon-
strated that the type of distribution shift influences the se-
lection of fine-tuning layers. We find potential in connect-
ing this observation to recent studies in selective fine-tuning
(Lee et al., 2022), specifically in designing a layer-selection
criterion for layer-selective fine-tuning.
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Figure 3: Layer-wise Feature Similarity (CKA) of ResNet-50 before/after fine-tuning

Effect of Neuron Alignment on the Feature Representations In this paragraph, we provide an
analysis of the effect of neuron alignment on the feature representations. We follow the practice
of Neyshabur et al. (2020) and compute the Centered Kernel Alignment (CKA) metric (Kornblith
et al., 2019) between the model before and after fine-tuning.

The CKA metric measures the similarity between two feature representations given two models. In
our case, we compare two cases (1) ERM (Baseline): CKA similarity of the model before/after fine-
tuning (M ↔ M ′), (2) SHERPA (Ours): CKA similarity of the neuron-aligned model before/after
fine-tuning (π(M) ↔ π(M)′). In specific, we compute the feature similarity for different layers
of the network, which is the ResNet-50 for our experimental setting. The feature similarity was
computed on the PACS dataset, under the same setting as our experiment in Section 4 (30 epochs
fine-tuning; a learning rate of 0.001; using the SGD optimizer with a momentum of 0.9). We
find that applying neuron alignment alters the feature similarity of the trained model before/after
fine-tuning, while further investigation is required. The experimental results of layer-wise feature
similarity analysis are reported in Table 5. The results are also visualized in Figure 3. Here, the
diagonal values of the matrix indicate the feature similarity between the corresponding layers of the
model before/after fine-tuning.

Effect of Neuron Alignment on the loss geometry We can also visually observe the effect of
neuron alignment on the loss landscape. We find that applying neuron alignment smoothens the loss
surface of the model. As visualized in Figure 2b, the sharpness of the loss landscape is significantly
different from that of the baseline method in Figure 2a. The smoothening effect of SHERPA can
also be seen in the loss contour plot Figure 4b, in comparison to that of the baseline in Figure 4a.
We view this as evidence that neuron alignment transports the model across the loss landscape. For
visualization, we adopted a filter normalization-based method introduced in Li et al. (2018).

B ABLATION STUDY

B.1 STUDY ON ANCHOR

Table 6: Ablation study on Anchor
(PACS)

Method A C P S Avg.

ERM 91.22 80.63 98.03 67.32 84.3 ±0.2

Random Perm. 87.80 84.64 97.85 71.06 85.3 ±2.1
SHERPA (Ours, A=1) 90.00 83.53 97.62 76.48 86.9 ±0.1
SHERPA (Ours, A=6) 89.91 84.27 97.70 76.91 87.2 ±0.2

Here we report experimental results showing that
SHERPA’s effects are not limited by the performance of
the anchor A. Specifically, we compare the OOD accu-
racy of SHERPA-trained models under varying anchors:
(1) Random Permutation: Instead of an anchor, we ran-
domly permute the model. (2) Single Model (A=1): The
anchor is a pre-trained model fine-tuned on the source do-
main Psrc. (3) Ensemble (A=6): Weight-averaged ensem-
ble of 6 models sharing a pre-trained backbone, each fine-tuned on the source domain Psrc. In all
cases, the anchor A uses a different pre-trained backbone as the model M , to ensure that they are
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Figure 4: The loss contour of trained models

located on a different basin before neuron alignment. In terms of performance, the ensemble anchor
(A=6) outperforms the single anchor (A=1).

In Table 6, we share the results of the anchor experiment, performed on the PACS dataset. Interest-
ingly, we find that the anchor’s performance does not directly affect M ’s performance. Specifically,
using a better-performing anchor (87.2) did not show superior performance than using a single an-
chor (86.9). While this can be partially explained by the idea that the loss landscape is shared across
multiple anchors, we believe further analysis is required.

B.2 STUDY ON HYPERPARAMETERS

Table 7: Ablation Study on Learning
Rate (PACS)

Learning Rate A C P S Avg.

ERM* (lr = 0.001) 91.22 80.63 98.03 67.32 84.3 ±0.2
ERM (lr = 0.0005) 86.73 74.83 98.15 67.52 81.8 ±0.3
ERM (lr = 0.0001) 88.19 68.22 98.09 55.41 77.5 ±0.2

Ours* (lr = 0.001) 90.00 83.53 97.62 76.48 86.9 ±0.1
Ours (lr = 0.0005) 88.04 82.25 98.63 69.56 84.6 ±0.1
Ours (lr = 0.0001) 85.41 68.90 98.45 62.23 78.8 ±0.2

In this section, we share our study on hyperparameters.
In essence, the first stage of SHERPA does not require
specific hyperparameters, as neuron alignment (i.e. Ac-
tivation Matching) requires no additional hyperparame-
ters. For the second-stage fine-tuning, we perform an ab-
lation study on the learning rate and the number of train-
ing epochs. Experimental results show that the effect of
SHERPA on OOD accuracy is present across all experi-
mental settings.

Table 8: Ablation Study on Training
Epochs (PACS)

Epochs A C P S Avg.

ERM (5) 87.99 75.00 96.90 66.33 81.6 ±0.3
ERM (10) 87.75 80.46 98.57 71.46 84.6 ±0.4
ERM (20) 89.85 79.39 98.09 70.07 84.4 ±0.2
ERM* (30) 91.22 80.63 98.03 67.32 84.3 ±0.2

Ours (5) 84.13 76.83 97.68 72.38 82.8 ±0.2
Ours (10) 87.75 81.74 98.15 70.86 84.7 ±0.1
Ours (20) 89.21 81.57 97.85 70.98 84.9 ±0.1
Ours* (30) 90.00 83.53 97.62 76.48 86.9 ±0.1

Learning Rate To test the reliability of our method
(SHERPA), we perform an ablation study on the
learning rate of SHERPA’s second stage fine-tuning.
Here, we report results under varying learning rates
(0.001, 0.0005, 0.0001) for 30 epochs in the PACS bench-
mark. Note that, for our experiments in Section 4, we
have set the learning rate as 0.001. As seen in Table 7, we
observed that in all cases, our method SHERPA outper-
formed the baseline ERM. In Table 7, the results marked
with an asterisk are the results reported in Table 1.

Training Epochs In this section, we show that
SHERPA consistently outperforms the baseline regardless of changes in training epochs. In Table 8,
we report experimental results under varying training epochs (5, 10, 20, 30) in the PACS benchmark.
In all cases, we find that applying neuron alignment positively affects the OOD performance of the
trained model. Notably, We find that the gap between our method and the baseline is the largest
when the training epochs are set as 30. In Table 8, the results marked with an asterisk are the results
reported in Table 1.
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C IMPLEMENTATION DETAILS

In this section, we report the implementation details of our experiments.

C.1 DATASET

Here, we elaborate on the datasets used in our work. All three datasets are benchmark datasets used
to test model generalizability in tasks such as Domain Generalization and Single-source Domain
Generalization (Gulrajani & Lopez-Paz, 2020; Zhou et al., 2022).

PACS PACS is a common benchmark in the field of domain generalization. PACS combines
images categorized into 7 classes from 4 datasets (Photo (P), Art Painting (A), Cartoon (C), and
Sketch (S)). Generally, the model is trained on the source domain, and tested on the target domain,
where domain refers to the distribution of the dataset. In our experiments, we adopt the leave-one-
out method to measure OOD robustness, which refers to selecting one dataset (e.g., A) as the target
domain, while the rest are used as the source domain. The model is first trained on the 3 source
domains (e.g., P, C, S), and tested on the unseen target domain A. The target domain is switched for
cross-validation, and the average OOD accuracy is used to measure a model’s OOD robustness, as
reported in Table 1.

Terra Incognita The Terra Incognita benchmark is designed to test the OOD robustness of a
trained model. Terra Incognita is a collection of multiple datasets, where each collected was from
different camera traps in the wild. The camera traps were placed stationary, hence there is minimal
room for spurious correlation with the background. The Terra Incognita experiment in our work uses
4 datasets (L100, L38, L43, L46) from 4 locations, which is commonly used in the DG setting. Like
PACS, the Terra Incognita experiment was performed using the leave-one-out method as in Table 2.

VLCS The VLCS benchmark is also a domain generalization benchmark. Similar to PACS, VLCS
comprises samples from 4 datasets (VOC2007, LabelMe, Caltech-101, and SUN) across 5 over-
lapping classes. The VLCS experiment also adopts the leave-one-out method for evaluation, as
displayed in Table 3.

C.2 MODEL ARCHITECTURE

Here, we report the architectural details of the models used in our experiments.

Model (M ) In our experiments, we used the ResNet-50 model as our training model M , which
is a standard model architecture in the domain generalization literature. In specific, we adopted the
model and its pre-trained weights provided in the torchvision library (Falbel, 2023). Model M is
pre-trained on the Imagenet (Russakovsky et al., 2014) dataset.

Anchor Model (A) The anchor model is a frozen ResNet-50 model with the same architecture
as our training model M . This is due to innate limitations of the neuron alignment algorithms
that require models to be of the same design for alignment. For our experiments, the anchor is a
pre-trained ResNet-50, similar to M but with different backbone initialization. The anchor A is
then fine-tuned on the source domains. Notably, the anchor model has no significant differences
in performance compared to the baseline model. We also tested using a weight-averaged model
(Wortsman et al., 2022) created from 6 models as the anchor. An ablation study on the anchor
model on SHERPA is reported in Appendix B.

C.3 TRAINING (FINE-TUNING)

In this section, we present the details of the fine-tuning procedure. In our reported experiments,
we train the model M (ERM) and the aligned model π(M) (SHERPA) on the source domain for
30 epochs, with a learning rate of 0.001 with the SDG optimizer, its momentum set as 0.9, and a
batch size of 32. We run the LP-FT (Linear Probing-Fine-tuning) framework for 5 epochs of linear
probing and 15 epochs of fine-tuning (Kumar et al., 2022). In Appendix B, we provided a detailed
study of the hyperparameters.

12


	Introduction
	Related Works
	Method: Leveraging Neuron Alignment for Robust Fine-tuning
	ShERPA: Shifted Basin for enhanced Robustness via Permuted Activations

	Experiments
	Experimental Results and Analysis

	Discussion
	Conclusion
	Analysis
	Ablation Study
	Study on Anchor
	Study on Hyperparameters

	Implementation Details
	Dataset
	Model Architecture
	Training (Fine-tuning)


