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INTRODUCTION

Robust Fine-tuning

 Fine-tuning (FT) selected layers of a foundational model has shown great
effectiveness in adaptation. However, the lack of clear criteria for layer-selection
poses a significant obstacle. In this paper, we propose a novel approach to this
problem by analyzing the loss landscape of trained networks.
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Figure 1. Loss landscape [1] Figure 2. Loss landscape visualization (Left: surface, Right: contour)

Contribution

« We reveal that neuron alignment [2] can help preserve pre-trained knowledge
amidst fine-tuning by exploiting the loss basin of trained models

« \We present a 2 stage fine-tuning method ShERPA that enhances OOD
generalizability without the additional cost of gradient computation

« \We demonstrate that neuron alignment offers insights into how neural networks
preserve and tune knowledge, revealing promising avenues for further exploration
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PRELIMINARIES

Notation Neuron Alignment
» Let A: trained anchor model, M : * In essence, neuron alignment algorithms
training model, ©,: model weight of align different models in their loss
A, 0, model weight of M. landscapes, leveraging the permutation
 Letmw = (P,P,:P,) beasetof invariance of neural networks [3].
permutations that aligns L-layer * Neuron alignment is generally used to
networks A and w(M) in their merge models in their weight space,
weight space. such that individually trained models can
be fused as one [4].

Exploiting pre-trained models

» The robustness of foundational
models derive from its pre-trained " — U — N
knowledge [6,7]. Fine-tuning the o o o
entire model inevitably distorts the Permutation Permutation
pre-trained knowledge. . o o
« Tuning only certain layers Anchor . JN
effectively boosts the OOD ) A

performance, while a reliable

selection criteria is unknown [8]. Figure 3. Neuron Alignment

MOTIVATION & PROPOSED METHOD

Motivation Method

* Fine-tuning a foundation model ShERPA (Shifted basin for Enhanced
distorts pre-trained knowledge, Robustness via Permuted Activations)
damaging the model's robustness « Stage 1: Perform Neuron Alignment
under distribution shifts [6] between A and M

* Models closely located in the same « Stage 2: Fine-tune the neuron-aligned
loss landscape share more pre- (M) on the source dataset.
trained features [7] « [Work-In-Progress] Stage 3: Analyze

|dea the aligned w (M) for fine-tuning layer

» \We use neuron alignment algorithms selection
to shift the training model towards
the basin of the trained anchor
model in order to minimize the
distortion of pre-trained knowledge.

» Analyze the difference between the
original model M and the aligned
model m(M) to design a layer-
selection criteria for parameter

efficient fine-tuning.

Figure 4. ShERPA framework
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Our framework Alignment via activation matching

« A set of permutations r that aligns A
and (M) minimizes:

ZCOH(X(?,@»X(]%PZ(@))» (1)

(5
for the i-th hidden unit in the [-th layer,
where X{; 5, X(i iy, refers to the random

variables representing the activations of
the i-th hidden unit in the [-th layer.

Algorithm 2: ShERPA framework

1 Input: L-layer training model M and its weights © ,,,
2 L-layer anchor model A and its weights 6 4, Data D,
3 fine-tune epochs nepochs, permutation 7 = (Py, Ps, - -
4 Output: Trained Model 7(M)’

5 Initialize A and M ;
6 Pretrain A with D;

// Stage 1:
7 forl=1:Ldo
8 Find [-th layer permutation P; that minimizes Equation (1);
9 L Forward propagate the permutation Fj;

- Pr);

Neuron-Alignment

10 Apply the permutation set 7 to M ;

// Stage 2: Fine-tuning « Optimizing Equation (1) maximizes the
11 forn =1 : nepochs do -
2| forimloim .  do sum of correlations between the

activations between 4 and M, which is a
Linear Assignment Problem (LAP) that
can be solved using combinatorial
optimization methods [5].

14 Forward and backward propagation of the mini-batch;

13 Sample i-th mini-batch from D;
15 Update w(M);

16 return trained 7w (M)’

Rationale for Neuron Alignment
» [oss landscape of trained networks reflect their generalizability
Alignment on the loss landscape will minimize knowledge distortion

y
Datasets Table 1: Accuracy on PACS. Analysis on DG accuracy (Table 1,2,3)
« Domain Generalization Benchmarks (e.g., PACS, Terra Incognita, VLCS) . Neuron-Alignment boosts the target
Evaluation Method A € P SI A domain accuracy of fine-tuned
_ _ _ ERM 9122 80.63 98.03 67.32] 84.3 £0.2 models
* Fine-tune model on source domains, evaluate accuracy on OOD target domains. Ensemble (m=6) 91.19 8247 98.84 7790 | 87.6 '
LP-FT (Kumar et al., 2022) | 91.17 81.21 98.45 73.57 | 86.1 £0.5 e  QOur framework (ShERPA) shows
Random Perm. 87.80 84.64 97.85 71.06 |85.3 +2.1 4 ' i,
= SHERPA (Ours) 90.00 83.53 97.62 76.48 | 86.9 +0.1 competlt_lveness against LP-FT, but
- falls behind an ensemble model.
“ Table 2: Accuracy on Terra Incognita.
) : 5 Effect of neuron alignment on model
Al 4= e N Method L100 L38 143 1L46| Avg. parameters (Table 4)
| - : ERM 61.11 40.15 48.54 40.00 | 47.4 0.4 . -
Target Domain _ Source domains ) Qarget domain J Ensemble (m=6) 773 6o erae a3ms | sra I\:euro_n Arilgnment keeps the model
. . . . 1,2022) | 64.17 4271 44.98 4224 | 48.5 +0.
Figure 5. Domain Generalization Task Setting LPTT Rumaretal, 2022) [ 0417 4271 4498 42241485 295 close In the parameter space
y, Random Perm. 62.56 42.87 4641 4037 |48.1 +0.7 . :
SHERPA (Ours) 64.63 4128 4547 41.78 |48.3 +0.2 Table 4: /5 distance of ResNet-50 pa-
rameters before/after fine-tuning
ABLATION STU DY & FUTURE WORK Table 3: Accuracy on VLCS.
Method | Convl Layerl Layer2 Layer3 Layer4 |
Study on Anchor Neuron Alignment for layer selection — T s vV A Epochs=1
L , . . p . e ERM 0.0195 0159 0210 0702 0.814
« \We find that ShERPA's effects are « \We find potential in using neuron ERM 98.59 66.53 76.51 80.24 | 80.5 +0.3 SHERPA (Ours) [ 0.0159 0127 0266 0.858 0.674|
. : : : Ensemble(m=6) 98.02 66.11 7855 81.61| 81.0 ool
not llmltEd by the perfOrmance Of allgnment to dESIgn a layer'SEIECtlon LP-FT (Kumar et al., 2022) | 99.08 67.10 76.44 80.58 | 80.8 +0.3 pochs=
o .. . ERM 0.0395 0282 0631 2235 2257
the anchor A. criteria for parameter-efficient fine- Random Perm. 97.40 63.00 72.50 76.30 | 77.3 +3.8 SHERPA (Ours) | 0.0263 0.289 0.669 2.125 z.ooa\
. . . . SHERPA (Ours) 99.22 66.19 75.47 82.43 | 80.8 +£0.2 ——
tuning/ surgical fine-tuning. Epochs=
. ERM 0.0333 0367 0753 3.776 2.696
: SHERPA (Ours) [ 0.0293 0.343 1.141  3.736 2.417‘
Effect of neuron alignment on loss geometry
REFERENCE * Neuron Alignment smoothens the loss surface (Below)
1] Visualizing the Loss Landscape of Neural Nets (NIPS 2018)
2] Convergent Learning: Do different neural networks learn the same representations? (NIPS 2015w)
3] The Role of Permutation Invariance in Linear Mode Connectivity of Neural Networks (ICLR 2022)
4] Model Fusion via Optimal Transport (NeurlPS 2020)
'5] A shortest augmenting path algorithm for dense and sparse linear assignment problems
(DGOR/NSOR: Papers of the 16th Annual Meeting of DGOR in Co-operation with NSOR)
6] Fine-tuning can Distort Pretrained Features and Underperform Out-of-Distribution (ICLR 2022)
/. WhaF IS bglng tra.nsferred in transfer-l_earnlng?. (NeurlPS 2020) T ——— (a) Vanilla Finc-tuning (ERM) i) SHERPA
8] Surgical Fine-tuning Improves Adaptation to Distribution Shifts (ICLR 2023) _ | , ,
y < Figure 2: The loss surface of trained models Figure 3: The loss contour of trained models D
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